Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The risk of compound coastal flooding in the San Francisco Bay Area is increasing due to climate change yet remains relatively underexplored. Using a novel hybrid statistical-dynamical downscaling approach, this study investigates the impacts of climate change induced sea-level rise and higher river discharge on the magnitude and frequency of flooding events as well as the relative importance of various forcing drivers to compound flooding within the Bay. Results reveal that rare occurrences of flooding under the present-day climate are projected to occur once every few hundred years under climate change with relatively low sea-level rise (0.5 m) but would become annual events under climate change with high sea-level rise (1.0 to 1.5 m). Results also show that extreme water levels that are presently dominated by tides will be dominated by sea-level rise in most locations of the Bay in the future. The dominance of river discharge to the non-tidal and non-sea-level rise driven water level signal in the North Bay is expected to extend ~15 km further seaward under extreme climate change. These findings are critical for informing climate adaptation and coastal resilience planning in San Francisco Bay.more » « less
- 
            Abstract California faces cycles of drought and flooding that are projected to intensify, but these extremes may impact water users across the state differently due to the region's natural hydroclimate variability and complex institutional framework governing water deliveries. To assess these risks, this study introduces a novel exploratory modeling framework informed by paleo and climate‐change based scenarios to better understand how impacts propagate through the Central Valley's complex water system. A stochastic weather generator, conditioned on tree‐ring data, produces a large ensemble of daily weather sequences conditioned on drought and flood conditions under the Late Renaissance Megadrought period (1550–1580 CE). Regional climate changes are applied to this weather data and drive hydrologic projections for the Sacramento, San Joaquin, and Tulare Basins. The resulting streamflow ensembles are used in an exploratory stress test using the California Food‐Energy‐Water System model, a highly resolved, daily model of water storage and conveyance throughout California's Central Valley. Results show that megadrought conditions lead to unprecedented reductions in inflows and storage at major California reservoirs. Both junior and senior water rights holders experience multi‐year periods of curtailed water deliveries and complete drawdowns of groundwater assets. When megadrought dynamics are combined with climate change, risks for unprecedented depletion of reservoir storage and sustained curtailment of water deliveries across multiple years increase. Asymmetries in risk emerge depending on water source, rights, and access to groundwater banks.more » « less
- 
            Abstract Synthetic ensemble forecasts are an important tool for testing the robustness of forecast‐informed reservoir operations (FIRO). These forecasts are statistically generated to mimic the skill of hindcasts derived from operational ensemble forecasting systems, but they can be created for time periods when hindcast data are unavailable, allowing for a more comprehensive evaluation of FIRO policies. Nevertheless, it remains unclear how to determine whether a candidate synthetic ensemble forecasting approach is sufficiently representative of its real‐world counterpart to support FIRO policy evaluation. This highlights a need for formalfit‐for‐purposevalidation frameworks to advance synthetic forecasting as a generalizable risk analysis strategy. We address this research gap by first introducing a novel operations‐based validation framework, where reservoir storage and release simulations under a FIRO policy are compared when forced with a single ensemble hindcast and many different synthetic ensembles. We evaluate the suitability of synthetic forecasts based on formal probabilistic verification of the operational outcomes. Second, we develop a new synthetic ensemble forecasting algorithm and compare it to a previous algorithm using this validation framework across a set of stylized, hydrologically diverse reservoir systems in California. Results reveal clear differences in operational suitability, with the new method consistently outperforming the previous one. These findings demonstrate the promise of the newer synthetic forecasting approach as a generalizable tool for FIRO policy evaluation and robustness testing. They also underscore the value of the proposed validation framework in benchmarking and guiding future improvements in synthetic forecast development.more » « less
- 
            The sensitivity of forecast-informed reservoir operating policies to forecast attributes (lead-time and skill) in many-objective water systems has been well-established. However, the viability of forecast-informed operations as a climate change adaptation strategy remains underexplored, especially in many-objective systems with complex trade-offs across interests. Little is known about the relationships between forecast attribute and policy robustness under deep uncertainty in future conditions and the relationships between forecast-informed performance and future hydrologic state. This study explores the sensitivity of forecast-informed policy robustness to forecast lead-time and skill in the outflow management plan of the Lake Ontario basin. We create water supply forecasts at four different subseasonal-to-annual lead-times and two levels of skill and further employ a many-objective evolutionary algorithm to discover policies tailored for each forecast case, historical supply conditions, and six objectives. We also leverage a partnership with decision-makers to identify a subset of candidate policies, which are reevaluated under a large set of plausible hydrologic conditions that reflect stationary and nonstationary climates. Scenario discovery techniques are used to map attributes of future hydrology to forecast-informed policy performance. Results show policy robustness is directly related to forecast lead-time, where policies conditioned on 12-month forecasts were more robust under future hydrology. Policies tailored for noisier long-lead forecasts were more robust under a wide range of plausible futures compared with policies trained to perfect forecasts, which highlights the potential to overfit control policies to historical information, even for a forecast-informed policy with perfect foresight. The relationship between performance and the hydrologic regime is dependent on the complexity of the interactions between control decisions and objectives. A threshold of objective performance as a function of supply conditions can support adaptive management of the system. However, more complex interactions make it difficult to identify simple hydrologic indicators that can serve as triggers for dynamic management.more » « less
- 
            Abstract. Deep learning (DL) rainfall–runoff models outperform conceptual, process-based models in a range of applications. However, it remains unclear whether DL models can produce physically plausible projections of streamflow under climate change. We investigate this question through a sensitivity analysis of modeled responses to increases in temperature and potential evapotranspiration (PET), with other meteorological variables left unchanged. Previous research has shown that temperature-based PET methods overestimate evaporative water loss under warming compared with energy budget-based PET methods. We therefore assume that reliable streamflow responses to warming should exhibit less evaporative water loss when forced with smaller, energy-budget-based PET compared with temperature-based PET. We conduct this assessment using three conceptual, process-based rainfall–runoff models and three DL models, trained and tested across 212 watersheds in the Great Lakes basin. The DL models include a Long Short-Term Memory network (LSTM), a mass-conserving LSTM (MC-LSTM), and a novel variant of the MC-LSTM that also respects the relationship between PET and evaporative water loss (MC-LSTM-PET). After validating models against historical streamflow and actual evapotranspiration, we force all models with scenarios of warming, historical precipitation, and both temperature-based (Hamon) and energy-budget-based (Priestley–Taylor) PET, and compare their responses in long-term mean daily flow, low flows, high flows, and seasonal streamflow timing. We also explore similar responses using a national LSTM fit to 531 watersheds across the United States to assess how the inclusion of a larger and more diverse set of basins influences signals of hydrological response under warming. The main results of this study are as follows: The three Great Lakes DL models substantially outperform all process-based models in streamflow estimation. The MC-LSTM-PET also matches the best process-based models and outperforms the MC-LSTM in estimating actual evapotranspiration. All process-based models show a downward shift in long-term mean daily flows under warming, but median shifts are considerably larger under temperature-based PET (−17 % to −25 %) than energy-budget-based PET (−6 % to −9 %). The MC-LSTM-PET model exhibits similar differences in water loss across the different PET forcings. Conversely, the LSTM exhibits unrealistically large water losses under warming using Priestley–Taylor PET (−20 %), while the MC-LSTM is relatively insensitive to the PET method. DL models exhibit smaller changes in high flows and seasonal timing of flows as compared with the process-based models, while DL estimates of low flows are within the range estimated by the process-based models. Like the Great Lakes LSTM, the national LSTM also shows unrealistically large water losses under warming (−25 %), but it is more stable when many inputs are changed under warming and better aligns with process-based model responses for seasonal timing of flows. Ultimately, the results of this sensitivity analysis suggest that physical considerations regarding model architecture and input variables may be necessary to promote the physical realism of deep-learning-based hydrological projections under climate change.more » « less
- 
            Abstract Forecast informed reservoir operations (FIRO) is an important advance in water management, but the design and testing of FIRO policies is limited by relatively short (10–35 year) hydro‐meteorological hindcasts. We present a novel, multisite model for synthetic forecast ensembles to overcome this limitation. This model utilizes parametric and non‐parametric procedures to capture complex forecast errors and maintain correlation between variables, lead times, locations, and ensemble members. After being fit to data from the hindcast period, this model can generate synthetic forecast ensembles in any period with observations. We demonstrate the approach in a case study of the FIRO‐based Ensemble Forecast Operations (EFO) control policy for the Lake Mendocino—Russian River basin, which conditions release decisions on ensemble forecasts from the Hydrologic Ensemble Forecast System (HEFS). We explore two generation strategies: (a) simulation of synthetic forecasts of meteorology to force HEFS; and (b) simulation of synthetic HEFS streamflow forecasts directly. We evaluate the synthetic forecasts using ensemble verification techniques and event‐based validation, finding good agreement with the actual ensemble forecasts. We then evaluate EFO policy performance using synthetic and actual forecasts over the hindcast period (1985–2010) and synthetic forecasts only over the pre‐hindcast period (1948–1984). Results show that the synthetic forecasts highlight important failure modes of the EFO policy under plausible forecast ensembles, but improvements are still needed to fully capture FIRO policy behavior under the actual forecast ensembles. Overall, the methodology advances a novel way to test FIRO policy robustness, which is key to building institutional support for FIRO.more » « less
- 
            Abstract This study examines whether deep learning models can produce reliable future projections of streamflow under warming. We train a regional long short‐term memory network (LSTM) to daily streamflow in 15 watersheds in California and develop three process models (HYMOD, SAC‐SMA, and VIC) as benchmarks. We force all models with scenarios of warming and assess their hydrologic response, including shifts in the hydrograph and total runoff ratio. All process models show a shift to more winter runoff, reduced summer runoff, and a decline in the runoff ratio due to increased evapotranspiration. The LSTM predicts similar hydrograph shifts but in some watersheds predicts an unrealistic increase in the runoff ratio. We then test two alternative versions of the LSTM in which process model outputs are used as either additional training targets (i.e., multi‐output LSTM) or input features. Results indicate that the multi‐output LSTM does not correct the unrealistic streamflow projections under warming. The hybrid LSTM using estimates of evapotranspiration from SAC‐SMA as an additional input feature produces more realistic streamflow projections, but this does not hold for VIC or HYMOD. This suggests that the hybrid method depends on the fidelity of the process model. Finally, we test climate change responses under an LSTM trained to over 500 watersheds across the United States and find more realistic streamflow projections under warming. Ultimately, this work suggests that hybrid modeling may support the use of LSTMs for hydrologic projections under climate change, but so may training LSTMs to a large, diverse set of watersheds.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
